Webinar Containers – Part2

Amazon Elastic Container Service

For Kubernetes

Abass SAFOUATOU, AWS Solutions Architect Patrick Madec, Partner Solutions Architect Kun Song, AWS Solutions Architect Roberto Migli, AWS Solutions Architect

Agenda

Time	Topic
9H00	Amazon Elastic Container Service for Kubernetes (EKS)
10H15	Break
10H30	EKS Workshop
12H00	Wrap-up

Early 2014

- \$ vi Dockerfile
- \$ docker build -t mykillerapp:0.0.1
- \$ docker run -it mykillerapp:0.0.1

Polyglot packaging

Portable runtime

Containers vs VMs

Bare Metal

Virtual Machine

Containers

So what's the catch?

Managing one container is easy...

...But managing many containers is difficult

Enter containers orchestration tools

AWS container services landscape

Management

Deployment, Scheduling, Scaling & Management of containerized applications

Amazon Elastic Container Service

Amazon Elastic Container Service for Kubernetes

Hosting

Where the containers run

Amazon EC2

AWS Fargate

Image Registry

Container Image Repository

Amazon Elastic Container Registry

What is Kubernetes?

What is Kubernetes?

Open source container management platform

Helps you run containers at scale

Gives you primitives for building modern applications

Why developers love Kubernetes

A single extensible API

Where you run K8s matters

of Kubernetes workloads run on AWS today

—CNCF survey

https://www.cncf.io/blog/2018/08/29/cncf-survey-use-of-cloud-native-technologies-in-production-has-grown-over-200-percent/

Kubernetes Architecture

Kubernetes Core Concepts

Pod - Group of one or more containers with shred storage/network

Manifest File - YAML/JSON used to deploy Kubernetes objects

Deployment - Run specified # of Pods of your application

Service - Maps a fixed IP address to a logical group of pods

Annotation - Key/Value pairs to hold non-identifying information

Label - Key/Value pair used for association and filtering

DaemonSet - Implements a single instance of a pod on a worker node

Example nginx-pods.yaml

```
kind: Deployment
                                  Create a "ReplicaSet" containing 2 "Pods"
replicas: 2 🖛
  template:
                                  App Name label
    metadata:
      labels:
                                  Container Image
        app: nginx
spec:
                                  Listener Port
      containers:
      - name: nginx
        image: nginx:1.7.9
                                    Implement from kubectl node with one
        ports:
                                    command:
        - containerPort: 80
```

"kubectl apply -f nginx-pods.yaml"

Example nginx-svc.yaml (Classic Load Balancer)

```
....
kind: Service
spec:
 selector:
                                 Route traffic to Apps named "nginx"
    app: nginx
  type: LoadBalancer
                                 Deploy an AWS Load Balancer
  ports:
  - name: http
                                 Listener and Target Config
    port: 80
    targetPort: 80
                           Implement from kubectl node with one
                           command:
```

"kubectl apply -f. nginx-svc.yamlaws

"Run Kubernetes for me." "Native AWS Integrations."

"An Open Source Kubernetes Experience."

Amazon Elastic Container Service for Kubernetes (EKS)

Highly Available

Automated Version Upgrades

Integration with Other AWS services

Kubernetes on AWS

3x Kubernetes masters for HA

EKS Architecture

Customer Account

AWS Account

Control Plane Networking

Kubernetes Endpoint Private Access

EKS versions and upgrades

Versions

X: major version

Y: minor version

Z: patch version

- Maintains last three minor releases
- Releases every 3 months (so branch maintened ~ 9 months)

EKS version X.Y

X: major version

Y: minor version

- Platform version EKS.N:
 - Kubernetes patches
 - API server changes
 - Automatic apply
- Support 3 stable Kubernetes versions

1.10.x version has been deprecated since July 22th 2019

EKS Security

IAM Authentication + Kubectl

Pod Security Policy

Container is about to remove dependence containers access resources that you don

Ex: root user is not recommeded inside but...

Feature: PodSecurityPolicy

 Defines what accesses your pod can have(root, syscall, R/W etc...)

- An EKS 1.13 cluster now has the PSP admission plugin enabled by default, you can use it directly
- The default policy is still permissive to keep backbward compatibility

EKS Network

Kubernetes Network Requirements

- All containers can communicate with all other containers without NAT
- All nodes can communicate with all containers (and vice-versa) without NAT
- The IP address that a container sees itself as is the same IP address that others see it as

Container Network Interface (CNI)

Amazon VPC CNI Plugin Goals

- 1. Simplify networking options for customers
- 2. Support high throughput, high availability, low latency and minimal jitter
- 3. Allow customers to reuse AWS VPC networking and security best practices such as use of:
 - VPC flow logs for troubleshooting and compliance auditing
 - VPC routing polices for traffic engineering
 - Security groups for isolation and regulatory requirements
- 4. Setup Pod networking within seconds
- 5. Support cluster scale to a minimum of 5000+

Amazon VPC CNI Plugin

Native VPC networking with CNI plugin

Pods have the same VPC address inside the pod as on the VPC

Simple, secure networking

Open source and on Github

https://github.com/aws/amazon-vpc-cni-k8s

Amazon VPC CNI plugin – Understanding IP Allocation

Primary CIDR range

RFC 1918 addresses \rightarrow 10/8, 172.16/12, 192.168/16

Publicly routable CIDR block (since May 2019)

Used in EKS for:

Pods

X-account ENIs for (masters \rightarrow workers) communication (exec, logs, proxy etc.)

Internal Kubernetes services network (10.100/16 or 172.20/16)

Secondary CIDR ranges

non-RFC 1918 address blocks (100.64.0.0/10 and 198.19.0.0/16)

Used in EKS for Pods only

How?

Amazon EKS custom network config \rightarrow enable \rightarrow create ENIConfig CRD \rightarrow annotate nodes

What's new

What's New?

September 18: EKS simplifies cluster setup with update-kubeconfig CLI command

October 18: EKS adds support for Dynamic Admission Controllers (Istio)

November 18: EKS launches in Ohio

November 18: EKS Adds ALB Support with AWS ALB Ingress Controller

December 18: EKS Adds Managed Cluster Updates and Support for Kubernetes Version 1.11

December 18: EKS Available in Frankfurt, Singapore, Sydney, and Tokyo

February 19: Amazon EKS Available in Mumbai, London, and Paris AWS Regions

March 19: Amazon EKS now supports Kubernetes version 1.12 and Cluster Version Updates Via CloudFormation

April 19: Amazon EKS Now Delivers Kubernetes Control Plane Logs to Amazon CloudWatch

April 19: Amazon EKS Supports EC2 A1 Instances as a Public Preview

May 19: Amazon EKS Releases Deep Learning Benchmarking Utility

May 19: Amazon EKS Adds Support for Public IP Addresses Within Cluster VPCs

May 19: Amazon EKS Simplifies Kubernetes Cluster Authentication

May 19: Introducing Amazon CloudWatch Container Insights for Amazon EKS and Kubernetes - Now in Preview

June 19: Amazon EKS now supports Kubernetes version 1.13, ECR PrivateLink, and Kubernetes Pod Security Policies

July 19: AWS VPC CNI Version 1.5.0 Now Default for Amazon EKS Clusters

July 19: Amazon EKS Available in Hong Kong Region

ECS Workshop: Objectives

- Build a cluster
- Creation of 3 microservices
- Test the RBAC feature

https://eksworkshop.com

Faites nous vos retours

http://bit.ly/AWScontainerParis

Thank you

